据美国科学促进会网站7月31日报道,美国冷泉港实验室(CSHL)科学家通过动物实验,揭示了人类急性髓细胞白血病中“致癌基因依赖”现象的基因机制,该项研究成果有望带来一种快速根除该癌细胞的新疗法。相关研究发表在8月1日出版的《基因与发育》杂志上。 Acute Leukemia 管癌细胞中的许多基因变异依赖于一种畸形的促进基因来表达,这种现象称为致癌基因依赖,而这种促进基因称为致癌基因。急性髓细胞白血病(AML)俗称血癌,其细胞中的致癌基因称为MLL,基因变异的MLL表达的蛋白质和其他蛋白质融合在一起,形成一种融合肿瘤蛋白MLL-AF9,正是癌细胞所“依赖”的蛋白质。 “我们研究的关键是,有了MLL-AF9蛋白后,癌细胞能干什么,怎样才能阻止这些动作。”领导该研究的冷泉港实验室副教授斯科特·W·洛维说,“也就是找出癌细胞依赖背后的基因机制,开发出专门的高效抗癌疗法。” AML患者体内的白细胞自我更新发生变异,大量增生却不能成熟。给这些癌细胞更新程序进行编程的核心角色是Myb,但Myb本是一种调控正常血细胞产生的蛋白质。研究小组发现,是MLL-AF9“绑架”了Myb,强迫它改变了程序,让血细胞不停地自我更新,无法再按正常的细胞生命周期发育成熟,衰老凋亡。 为了找出“绑架”Myb的特殊基因,研究小组快速将人类AML变异引入到小鼠模型中,这种经过基因改造的小鼠称为“马赛克鼠”,无论是表现症状还是治疗反应都能模拟人类AML。随后,他们利用了一种基因转换技术使MLL-AF9失去了活性。当活鼠体内的MLL-AF9被抑制后,癌细胞就开始萎缩,并很快从所有感染器官中消失了。 此外,“如果能抑制Myb,对于白血病细胞来说也是一种打击。根据实验,抑制了Myb之后,小鼠的白血病细胞那种畸形的自我更新能力就丧失了,重新恢复到正常状态,发育成熟并最终凋亡。” 论文作者约翰尼·祖博解释说,而这种蛋白质抑制对正常的白细胞没有副作用。 “实验显示,抑制了调控畸变更新的中介体Myb,就能恢复以前的细胞生长程序,消除AML。这表明癌细胞仍然保留了以前正常的细胞生长程序。”洛维说,研究致癌基因依赖是一种普遍适用的方法,有助于开发抑制多种癌症变异程序的药物。 生物探索推荐英文原文: Scientists Reveal Mechanism Behind 'Oncogene Addiction' in Acute Leukemia A team of scientists at Cold Spring Harbor Laboratory (CSHL) has laid bare the mechanism behind a phenomenon called oncogene addiction in mice suffering from a form of leukemia that mimics acute myelogenous leukemia (AML) in humans. Significantly, the team was able to mobilize their newly gained understanding to target "addiction" pathways in the model mice, resulting in rapid and complete eradication of the cancer, which is usually fatal and resistant to conventional chemotherapy. Oncogene addiction refers to the curious phenomenon that cancer cells, despite harboring many genetic alterations, can remain dependent on the continuing expression of a single aberrant, cancer-promoting gene -- an oncogene. In this case, the gene in question, called MLL, has long been implicated in human cancers of the blood. In AML, as a result of a genetic anomaly, the protein expressed by the MLL gene fuses with another protein, to form a fusion oncoprotein called MLL-AF9. It is this protein to which AML cancer cells are "addicted." "The crucial questions are what MLL-AF9 enables cancer cells to do, and how we might intervene to suppress these effects -- in other words, how to use our knowledge of the mechanism behind the cancer cell's addiction for developing highly specific anti-cancer therapies.," says CSHL Adjunct Professor and HHMI Investigator Scott W. Lowe, who directed the research, which is reported in a paper that appears August 1 in the journal Genes & Development. "Until now, we've not been able to answer these questions in living animals." The team's research demonstrated that MLL-AF9 enforces a cellular program that enables blood cells to keep renewing themselves, rather than progressing through the usual stages of cellular life, and eventually dying. While this property of aberrant self-renewal has been a known characteristic of leukemia cells for many years, Lowe and his CSHL colleagues were able to decipher the underlying genetic program in unprecedented detail. The central player orchestrating these cancer-specific self-renewal programs was found to be Myb, a protein known to regulate normal blood cell production that previously also has been implicated in certain subtypes of leukemia. "MLL-AF9 apparently 'hijacks' Myb to enforce a program of aberrant self-renewal," explains Amy Rappaport, who was a co-first author on the paper, with Johannes Zuber. The team also included Christopher Vakoc, a CSHL Fellow, among others. "The consequences of inhibiting Myb in established leukemia were striking," says Zuber. "Following Myb suppression, mouse leukemia cells invariably lost their aberrant self-renewal ability, resumed their normal cell fate, maturing into white blood cells, and eventually got eliminated." As a consequence, mice harboring this aggressive and chemotherapy-resistant form of AML were cured by inhibiting Myb. The protein's suppression had no adverse impact upon normal white blood cells. To identify and study genes that are specifically required in cancer cells, the researchers took a systematic approach that demonstrates the power of a series of technological advances made by Lowe's group in concert with several other groups at CSHL. These advances play an important role in CSHL's new Cancer Therapeutic Initiative. The Initiative aims to rapidly identify new therapeutic targets and validate them in mouse models specific for genetic subtypes of human cancer. In the paper published July 31, Lowe's team first implemented a rapid strategy to introduce common human AML mutations in mice so that they closely mimicked human AML, both in terms of symptoms and response to treatment. These genetically reprogrammed mice are called "mosaic mice." As a next step, the team used a genetic switch to inactivate the oncogene that gives rise to the "addictive" MLL-AF9 oncoprotein. When MLL-AF9 was suppressed in living mice, the cancers shrank and were soon eliminated altogether from all affected organs. This result confirmed the cancer cells' addiction to MLL-AF9, and provided a unique system to reveal the underlying genetic networks. To further explore components of these networks, the team used RNA interference, or RNAi, an experimental tool to suppress gene function, which in prior work they had adapted for use in animal models. These recent advances now provide a means to switch off virtually any gene in an established cancer, and thereby enable the identification and evaluation of new potential drug targets. While the current study focused on the dramatic effects of suppressing Myb in AML, the approach validates a general method for understanding oncogene addiction in vivo that can be applied in other cancer types. The RNA interference technique used in the experiments to block Myb is not applicable in humans, for a variety of still-daunting technical reasons. The hope is to find a small molecule that specifically targets the Myb protein, which can be the basis for a human drug. None has yet been developed, although the search is on. But, says Lowe, "our results show that suppressing a single mediator of aberrant self-renewal can re-establish pre-existing cell-fate programs and eliminate aggressive AML. This suggests that pre-existing cell-fate programs remain hard-wired even in cancer cells, and raises our hope that agents that inhibit these programs will be less prone to resistance mechanisms that prevent targeted therapies from producing a lasting effect in other cancers."
能分辩AML和ALL的miRNAs 德发现儿童白血病遗传性基因变异 研究确定预防白血病的关键基因JunB 弹性蛋白质帮螃蟹节省脑力 李凌:白血病根治有新希望 两个基因变异可引起侵袭性白血病 科学家追踪白血病患者基因变化 DNA甲基化或能预测急性儿童白血病发展进程